ZeroPoint Technologies и Rebellions займутся разработкой ИИ-ускорителей со «сжимаемой» памятью

 

Шведская компания ZeroPoint Technologies, специализирующаяся на создании решений для оптимизации памяти, объявила о стратегическом альянсе с южнокорейским разработчиком ИИ-чипов Rebellions с целью разработки ИИ-ускорителей для инференс. Компании планируют представить новые продукты в 2026 году, обещая «беспрецедентную производительность в пересчёте на токены в секунду на Вт (TPS/W)», пишет EE Times.

Компании планируют увеличить эффективную пропускную способность и ёмкость памяти для нагрузок инференса, используя технологии сжатия, уплотнения и управления памятью от ZeroPoint Technologies. По словам генерального директора ZeroPoint Technologies Класа Моро (Klas Moreau), аппаратная оптимизация работы с памятью на уровне ЦОД позволит увеличить адресуемую ёмкость с ускорением работы почти в 1000 раз по сравнению с использованием программного сжатия.

Компании планируют улучшить показатели токенов в секунду на Вт без ущерба для точности, используя сжатие модели без потерь для уменьшения её размера и сокращения использования энергии, необходимой для перемещения компонентов модели. Гендиректор Rebellions Сонхён Пак (Sunghyun Park) указал, что партнёрство позволит компаниям переопределить возможности инференса, предоставляя более умную, экономичную и устойчивую ИИ-инфраструктуру.

 Источник изображения: ZeroPoint Technologies

Источник изображения: ZeroPoint Technologies

Моро ранее заявил, что более 70 % данных, хранящихся в памяти, являются избыточными, что позволяет полностью избавиться от них, добившись сжатия без потерь полезной информации. Такая технология сжатия должна выполнять ряд специфических действий в пределах наносекунды, т.е. всего нескольких тактов: «Во-первых, она должна отрабатывать сжатие и распаковку. Во-вторых, она должна уплотнять полученные данные, собирая небольшие фрагменты в единичную линию кеша, чтобы значительно улучшить видимую пропускную способность памяти, и, наконец, она должна бесперебойно управлять данными, отслеживая все фрагменты. Чтобы минимизировать задержку, такой подход должен работать с гранулярностью линий кеша — сжимая, уплотняя и управляя данными в 64-байт фрагментах — в отличие от гораздо больших блоков 4–128 Кбайт, используемых традиционными методами сжатия вроде ZSTD и LZ4».

По словам Моро, благодаря этой технологии, для базовых рабочих нагрузок в ЦОД гиперскейлера адресуемая ёмкость памяти и пропускная способность могут быть увеличены в два-четыре раза, производительность на Вт может увеличиться на 50 %, а совокупная стоимость владения (TCO) может быть значительно снижена. А для специализированных нагрузок, таких как большие языковые модели (LLM), интеграция программного сжатия в сочетании с встроенной аппаратной декомпрессией (что минимизирует любую дополнительную задержку) уже продемонстрировала прирост примерно на 50 % в адресуемой ёмкости памяти, пропускной способности и токенах в секунду.

Моро утверждает, что грядущая интеграция аппаратной (де-)компрессии обещает ещё более существенные улучшения. Например, для базовых ИИ-нагрузок кластер со 100 Гбайт физической памяти благодаря использованию этой технологии будет функционировать так, как если бы у него было 150 Гбайт памяти. «Это не только представляет собой миллиарды долларов потенциальной экономии, но и может повысить производительность сложных ИИ-моделей», — заявил Моро. «Эти достижения обеспечивают надёжную основу для компаний, производящих чипы ИИ, позволяя бросить вызов доминированию таких гигантов отрасли, как NVIDIA», — добавил он.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER. | Можете написать лучше? Мы всегда рады новым авторам.

Источник:

Постоянный URL: https://servernews.ru/1121013

Комментарии

Система Orphus